Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Dr. Filippo Biondi
The expansion of oil palm plantations across the Earth is causing deforestation of natural forests.

Deforestation contributes to increasing CO2 emissions in the atmosphere.

This paper gives contribution in designing a new PolSAR classification scheme.

The method use additive information existing by the interference generated between two Doppler sub-apertures PolSAR (PolInSAR) + multi-chromatic analysis (MCA-PolInSAR).
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Multi Chromatic Analysis
Range-Doppler Sub-apertures

• **Range** → Interferometric SAR

• **Azimuth** → MTI-SAR, Absolute Height estimation with (Staring Spotlight)

Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Doppler sub-aperture analysis → MTI-SAR
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

State of the art of MCA: River velocity estimation.
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

State of the art of MCA: River velocity estimation.
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

State of the art of MCA: River velocity estimation.
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

State of the art of MCA: River velocity estimation.
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

State of the art of MCA: River velocity estimation.
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

State of the art of MCA: River velocity estimation.
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

\[\delta R = \frac{c}{2 \cdot \text{Chirp_band}} \]
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Azimuth Chirp

\[\delta A = \frac{L}{2} \]
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Volume Oriented Indetermination Problem
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

MCA for solving polarimetric Oriented Volume miss-classification problem.

State of the art:

Polarometric Interferometric SAR (PolInSAR)

\[
P(p|\{T\}) = \frac{L^{L-p} |\{T\}|^{L-p} \exp(-LTr(\{T\}^{-1}\{T\}))}{\pi^{p(p-1)/2} \gamma(L) \cdots \gamma(L-p+1) |\{T\}^{-1}|^L}
\]

Wishart Classification
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

MCA for solving polarimetric Oriented Volume miss-classification problem.

State of the art:
- Polarometric Interferometric SAR (PolInSAR)

Master (Full-Pol)

Slave (Full-Pol)

\[
P\left(\langle [T]\rangle / [T_m]\right) = \frac{L^p L_{Tm}}{\pi^{p+1}} \exp -LT \left([T_m]^{-1}\langle [T]\rangle\right) \pi^{\frac{p}{2}} \gamma \cdot \gamma \cdot \gamma \cdot [T_m]_{L}^{L}
\]

L.Ferro-Famil, E. Pottier, J.S. LEE (2002)
PolInSAR Classification

Optimized Coherences (HH-HV-VV)
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

MCA for solving polarimetric Oriented Volume miss-classification problem.

State of the art:

Polarometric Interferometric SAR (PolInSAR)

\[
P(\langle |T| \rangle / |T_m|) = \frac{L^p \langle |T| \rangle^{L-p} \exp(-LT \text{Tr}(T_m^{-1} \langle |T| \rangle))}{\pi^{p|L-1|/2} \gamma(L) \cdots \gamma(L-p+1) |T_m|^L}
\]

L. Ferro-Famil, E. Pottier, J.S. LEE (2002)
PolInSAR Classification

Optimized Coherences (HH-HV-VV)
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

MCA for solving polarimetric Oriented Volume miss-classification problem.

Solution:

Multi-Chromatic-Analysis-Polarometric-Interferometric-SAR

MCA-PolInSAR

Single image (Full-Pol)

F. Biondi Modified PolInSAR Classification

PolSAR
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Multi-Chromatic decomposition

Single image (Full-Pol)

RAW HH

RAW HV

RAW VV

F1 (Master) Full-Pol

F2 (Slave) Full-Pol
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

MCA for solving polarimetric Oriented Volume miss-classification problem.

State of the art:
Polarometric Interferometric SAR (PolInSAR)

F1 (Master Full Pol)

\[P\left(\frac{\langle [T]\rangle}{[T_m]}\right) = \frac{L^L P^{|[T]|^{L-p}} \exp(-LT \text{tr}([T_m]^{-1}<[T]>))}{\pi^p \frac{p-l}{2} \gamma(L) \cdots \gamma(L-p+1)[T_m]^L} \]

F2 (Slave Full Pol)

Optimized Intra-Chromatic-Coherences (HH-HV-VV)

24 classes:
(8 → HH)
(8 → HV)
(8 → VV)

F. Biondi (2017)
MCA-PolInSAR Classification
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Geospatial data exploitation for maritime surveillance

1. Single raw SAR image input
2. Band-pass filter 1
 - SAR focusing
 - Master-F1
3. Band-pass filter 2
 - SAR focusing
 - Master-F2
4. SLC master-F1
5. Infra chromatic T_6 matrix generation
6. MCA-PolInSAR coherency optimization
7. MCA-PolInSAR unsupervised ML Wishart classification
8. Classification output

MCA $\gamma_{opt}^{(1,2,3)}$
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

(a) Double-bounce
(b) Volume
(c) Single-bounce
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

![MCA-PollnSAR unsupervised classification map](image-url)
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Wishart supervised classification map

Range (pixel)

Azimuth (pixel)
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Detection probability

Wishart unsupervised = 0.7737
Wishart supervised = 0.3488
MCA-PolInSAR = 0.6846

False alarm

Wishart unsupervised = 0.1068
Wishart supervised = 0.2202
MCA-PolInSAR = 0.1040
Precise Palm Oil trees Detection By Polarimetry and Multi-Chromatic Analysis

Detection probability

Wishart unsupervised= 0.3488
Wishart supervised= 0.7737
MCA-PolInSAR= 0.6846

False alarm

Wishart unsupervised= 0.1068
Wishart supervised= 0.2202
MCA-PolInSAR= 0.1040
The expansion of oil palm plantations across the Earth is causing deforestation of natural forests.

Deforestation contributes to increasing CO2 emissions in the atmosphere.

This paper gives contribution in designing a new PolSAR classification scheme.

The method use additive information existing by the interference generated between two Doppler sub-apertures PolSAR (PolInSAR) + multi-chromatic analysis (MCA-PolInSAR).